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1,8-Diazabicyclo[6.6.6]eicosa-4,11,17-triyne: a flexible cage for protons,
copper(i) and silver(i)
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X-Ray structure analysis of the diprotonated cage of 3 and
its silver(i) and copper(i) complexes reveals in all three cases
the in,in conformation and a significant shortening of the
intrabridgehead distance from 5.05 Å in 3 to 4.85 Å for
3·2H+, 4.23 Å for 3·Cu+ and 4.61 Å for 3·Ag+.

Investigations of bicyclic compounds with nitrogen atoms at the
bridgehead positions prove that mono- and di-protonation
depends on the intrabridgehead distance and on the conforma-
tion(s) at the nitrogen atoms.1 In the case of 1,6-diazabicyclo-
[4.4.4]tetradecane 1, where the nitrogen atoms adopt the in,in

conformation,2 monoprotonation yields a very stable species
due to a very strong intramolecular hydrogen bond between the
two bridgehead positions,2 rendering diprotonation rather
difficult.3 For the [1.1.1]cryptand 2,4–6 which also shows the
in,in conformation, inside protonation of both nitrogens has
been reported. This finding can be traced back to the larger
N…N distance in 2 [3.88(2) Å]5 as against in 1 [2.806(3) Å].2
In 2·2H+ the N…N distance was found to be enlarged to 3.91(1)
Å.5 Reports on the accommodation of ions other than H+ in
bicyclic bridgehead diamines are sparse. For the encapsulation
of Li+ in 26 the other functions were held at least partly
responsible.

Our recently prepared 1,8-diazabicyclo[6.6.6]eicosa-
4,11,17-triyne 37 resembles a stretched 1 and shows an even
larger N…N distance [5.049(2) Å] than 2. However, the steric
effects of the bridges, as encountered in 1 and related species,
should be reduced due to the linear and rigid triple bonds.
Therefore we studied the reactions of 3 with protons and metal
ions.

The protonation of 3 with TFA was investigated in CDCl3,
CD3OD and D2O as solvents.† In CDCl3 1.5 equiv. of TFA are
necessary to generate 3·H+, while in CD3OD only 0.5 equiv. are
required. Monoprotonation reduces the symmetry of 3 (D3) to
C3, which yields six signals in the 13C NMR spectrum of 3·H+.
In the 1H NMR spectrum (CD3OD, 200 MHz) only four lines
are found at d 2.43, 2.79, 3.43 (in a ratio of 2 : 1 : 1) and 7.89 (the
proton at the nitrogen atom). Five equivalents of TFA in CDCl3
have to be added to obtain a two-fold protonation of 3.† The
shape of the 1H NMR spectra of 3·H+ and 3·2H+ prove that the
rapid equilibration between the two enantiomorphic helical
conformations found in 3 is still present.

In all cases the protonation equilibrium is achieved instantly
after addition of the acid. Even deprotonation succeeds easily
with molar amounts of KOH. In 3·H+ and 3·2H+ we find a fast
intermolecular proton exchange with solvents such as CD3OD
and D2O. This behaviour is in contrast to the experiences gained
from 1 and 2 and can be classified as the reaction of a normal
tertiary amine. X-Ray investigations of 3·2H+ show‡ that both
bridgehead hydrogens are inside the cage [Fig. 1(a)].

Interestingly, the encapsulation of two protons in the cavity
of 3 causes a contraction of the N…N distance by 0.2 Å to
4.845(3) Å (see Table 1) and an increase of the inward
pyramidization of the nitrogens by about 3° to ca. 112°, which
is close to the ideal tetrahedral angle. The torsional angle
between the triple bonds is reduced to 42.7(5)°. The distance
between the two bridgehead protons in 3·2H+ amounts to
3.066(3) Å. An intramolecular proton exchange of 3·H+ in
1,1,2,2-tetrachloro[2H2]ethane could not be detected up to
130 °C.

Stirring a solution of 3 under argon in CH2Cl2 with a small
excess of MOTf (M = Cu, Ag) at room temperature for three
days leads to 1 : 1 complexes for both metals in almost
quantitative yields. The spectroscopic properties of 3·Cu+ and
3·Ag+ suggest that the metal is situated in the center of the
cage.† NMR and IR studies give no hints of a binding
interaction between the metal ion and the surrounding triple
bonds, so it can be said that the ligand coordinates mainly with
the bridgehead nitrogens, effecting a linear N–M+–N geometry.
The structural assignment is supported by X-ray investigations
of single crystals of both complexes.‡ It is seen [Fig. 1(b), (c)]
that the metal ion is located in the center of the cage, forcing the
bridgehead positions even closer together. 3·Ag+ displays, like
3, D3 symmetry, while 3·Cu+ reveals C3h symmetry. The N–

Fig. 1 ORTEP plots (50% ellipsoid probability) of the molecular structures
of (a) 3·2H+, (b) 3·Cu+ and (c) 3·Ag+.
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M+–N bond angles for 3·Cu+ and 3·Ag+ amount to 176.6(3) and
178.9(3)°, respectively. Relevant data for 3·Cu+ and 3·Ag+ are
collected in Table 1 and compared with 3 and 3·2H+.

As a consequence of the shortening of the N…N distance in
3, the torsion angle between the triple bonds is reduced
considerably in 3·Cu+ and 3·Ag+. The distances between the
centers of the alkyne groups and the metal ions
[3·Cu+ : 2.460(4)–2.576(4), 3·Ag+ : 2.493(4)–2.539(4) Å] are
larger than for other alkyne silver or copper complexes [Cu+–
center of alkyne : 2.02(1) Å, Ag+–center of alkyne : 2.33(1) Å].8
In both metal complexes the bridgehead atoms show an ideal
tetrahedral conformation. The mean N–Ag+ and N–Cu+ dis-
tances [2.311(3) and 2.114(2) Å, respectively] are rather
expanded with regard to the values reported for homoleptic two-
coordinated silver(i) amine complexes, e.g. Ag(NH3)2NO3
[2.121(1) Å]9 and comparable complexes of copper(i) (average
value: 1.88 Å).10 Many of the known mononuclear two-
coordinated copper(i) complex cations deviate considerably
from the ideal linear structure to coordinate further ligands and
come up to the preferred four-coordinate tetrahedral geometry.
Although in 3·Cu+ potential ligands (the triple bonds) are within
reach, this tendency seems to be effectively blocked due to the
extended N–Cu+–N arrangement.

The triflate salts of 3·Cu+ and 3·Ag+ are stable to air and not
light sensitive. None of the silver(i) halides is obtained by
treatment of solutions of 3·Ag+ TfO2 in CH2Cl2 or MeOH with
Me2NH2Cl, Et3NHBr and Bu4NI at room temperature, indicat-
ing remarkable stability. The aptitude of 3 as a flexible ligand
for further metal ions is currently under investigation.
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Notes and references
† Selected data for 3·2H+(CF3CO2

2)2: dH(CD3OD, 200 MHz) 3.01 (t, J 5.6,
12H), 3.60 (t, J 5.4, 12H), 7.87 (s, 2H); dC(CD3OD, 50.3 MHz) 16.6, 55.5,
81.1, 113.2, 114.1, 118.9, 119.8, 158.6, 159.4, 160.3, 161.0. For 3·Cu+

TfO2: dH(CD2Cl2, 300 MHz) 2.63 (s, 24H); dC(CH2Cl2, 50.3 MHz) 18.9,
53.0, 80.3; Calc. for C18H24N2

65Cu: 331.1235, found: 331.1241. For 3·Ag+

TfO2: dH(CD3OD, 500 MHz) 2.64 (s, 12H), 2.69 (s, 12H); dC(CD3OD, 125
MHz) 18.9, 54.1, 79.0; Calc. for C18H24N2

107Ag: 375.0990, found:
375.0986.
‡ Crystal data for 3·2H+ (CF3CO2

2·CF3CO2H)2: C26H28F12N2O8, M =
724.50, colourless crystals from CDCl3, monoclinic, a = 16.0744(1), b =
10.2190(2), c = 18.9058(3) Å, b = 91.5930(1)°, V = 3104.35(8) Å3, rc =

1.55 Mg m23, T = 200(2) K, space group C2/c, Z = 4, m(Mo-Ka) = 0.16
mm21, 11183 reflections collected, 2687 independent reflections (Rint =
0.0239), R1 (F) = 0.046, wR2 (F2) = 0.112. The structure contains two
hydrogen-bonded trifluoroacetate dimers as anions for each dication.

For 3·Cu+ TfO2: C19H24CuF3N2O3S, M = 481.00, colourless crystals
from MeOH, monoclinic, a = 11.7163(4), b = 7.4458(3), c = 23.4107(8)
Å, b = 99.8520(1)°, V = 2012.17(13) Å3, rc = 1.59 Mg m23, T = 200(2)
K, space group P21/n, Z = 4, m(Mo-Ka) = 1.24 mm21, 14503 reflections
collected, 3478 independent reflections (Rint = 0.0291), R1 (F) = 0.029,
wR2 (F2) = 0.069. The copper atom is refined with a free site occupancy
factor (it refines to a partial site occupancy of 0.8), because the copper
position is partially occupied by a proton (20% occupancy). 10% of the
complex cations are disordered, showing a D3 symmetry like 3·Ag+.

For 3·Ag+ (TfO2·0.25 CH2Cl2): C19.25H24.50AgCl0.50F3N2O3S, M =
546.56, colourless crystals from CH2Cl2, triclinic, a = 13.4273(2), b =
13.9115(3), c = 14.0299(3) Å, a = 65.5820(1), b = 73.2750(1), g =
64.6590(1)°, V = 2137.02(7) Å3, rc = 1.70 Mg m23, T = 200(2) K, space
group P1̄, Z = 4, m(Mo-Ka) = 1.15 mm21, 15934 reflections collected,
7079 independent reflections (Rint = 0.0200), R1 (F) = 0.032, wR2 (F2) =
0.075. Two independent complex cations in the asymmetric unit. The unit
cell contains four complex cations, four triflate anions and one disordered
CH2Cl2 molecule. CCDC 182/1102. Crystallographic data is available as
.cif files from the RSC web site, see: http://www.rsc.org/suppdata/cc/
1999/171
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Table 1 Most relevant distances and angles for 3, 3·2H+, 3·Cu+ and 3·Ag+ (standard deviations given in parentheses)

3a 3·2H+ 3·Cu+ 3·Ag+b

N…N/Å 5.049(2) 4.845(3) 4.227(5) 4.614(5)
4.630(5)

N–M/Å — — 2.110(2), 2.118(2) 2.306(3), 2.308(3)
2.313(3), 2.317(3)

M–Xc/Å — — 2.460(4)–2.576(4) 2.493(4)–2.527(4)
2.498(4)–2.539(4)

Qd (°) 55.5(3) 42.5(3)–42.9(3) 6.3(3)–7.9(3) 8.2(3)
16.2(3)

d(C·C)/Å 1.188(2) 1.192(4) 1.189(6)–1.195(6) 1.194(6)–1.199(6)
1.195(6)–1.204(6)

a Ref. 7. b Data in italics refer to the second independent complex cation in the asymmetric unit. c M–X is the distance between the metal and the center
of the triple bonds. d Torsional angle between the triple bonds.
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